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Time, Clocks and event 
orderings

Distributed system
N processes: P1, P2, ..., PN

• Communicate through messages
• Asynchronous system
• No physical clock

Events: send/receive message or local step
P1
P2

P3

P4
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Time, Clocks and event 
orderings

We want to order the events of an execution
Why?

• As part of some distributed algorithm
• E.g. Caching of replicated shared objects
• Causally consistent multicast

• For monitoring, debugging etc.

How?
• Use a logical clock algorithm (a.k.a time stamping 

system) to assign timestamps to the events
• Timestamps

• Equality and ordering operators: =LC,  <LC
• Concurrent if incomparable (unorderable)
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Event orderings

Total order
No concurrency
Example: A < C < B < D < E

A B

C D E

Causal order
”happened before” or ”knows about” relation
Example: A || C, B || C, B || D, B || E
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Lamport Clocks [Lamport 1978]
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Vector Clocks [Fidge, 1991, Mattern, 1988, Schmuck, 1988]

N clock entries
Causal order

Local update

Local update

1

Receive msg update

Receive msg update

32 <LC 33 <LC
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Previous Work

Plausible Clocks [Torres-Rojas and Ahamad, 1999]

Class of logical clocks
• Orders events consistent with causal order, but 

may also order concurrent events.
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Process ID Clock vector

• Includes: Lamport Clock and Vector clock
• R-Entry Vector Clock

• R clock entries
• Clock vector indexed by Process ID mod R
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Vector clock
Process ID Clock vector

Mapping

Non-uniformly mapped R-entry 
vector (NUREV) clocks

A generalization of R-entry vector clocks
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NUREV clock
Process ID

Mapping

Clock vector

Allows (for example) self tuning and 
adaptation of the timestamping system
We have proved that
All NUREV clocks are plausible clocks.

• Regardless of mapping function and how it changes.

Allows a different mapping between 
process ID and clock entry in each 
timestamp
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How to avoid information loss?
Where is ordering information lost?

Inflation of one process key introduces ordering among 
concurrent events

Minimize inflation at updates
Choose the mapping so that the 
inflation is small.

Bdep-error sequence Bindep-error sequence

Next-Contact
Avoid inflating the keys of processes 
you won’t hear from in a long time
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R-Others Clock (ROV)

Idea
Preserve recent information
Use exclusive entry for

• own key
• R-2 other processes’ keys

(Last R-2 communication partners)
All other process keys share one entry
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Process ID

Clock vector

Benefits
Constant-size timestamps
Agrees well with Next-Contact
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MinDiff clock

Idea
Minimize the inflation at each clock 
update

• Use exclusive entry for own key
• Select a new mapping function on each 

receive update
• Map process keys with similar values to 

the same entry

Timestamps need to include mapping
• Small for a small number of clock entries
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Experiments

Simulations
Peer-2-Peer systems
Client-Server systems

Performance measure
#ordered concurrent event pairs /
total #concurrent event pairs
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Experimental results

Peer-to-peer system  100 processes
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Experimental results

Client-server system  1 server 99 clients
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MinDiff timestamp sizes

System size
(#processes)

Timestamp size
(byte)
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Conclusions
Non-Uniformly Mapped R-Entries 
Vector Clocks (NUREV)

A general class of logical clocks
Guaranteed to be plausible
Includes Lamport, Vector and REV clocks

Analysis of when and how NUREV clocks 
order concurrent events 
New NUREV clock algorithms

MinDiff and R-Others clocks
Improved performance at small timestamp 
sizes
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Future Work

Apply NUREV clocks in a group 
communication / ordered multicast framework

Work in progress
Further investigation of mapping functions

Subsets with constant size representation
Approximations

Bound the size of vector entries
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Questions?
Contact Information:

Address:
Anders Gidenstam / 
Marina Papatriantafilou 
Computing Science
Chalmers University of Technology
SE-412 96 Göteborg, Sweden

Email:
<andersg , ptrianta> @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~dcs/


