
2004-03-25ICDCS’04 Anders Gidenstam1/18

Adaptive Plausible
Clocks

Anders Gidenstam
Marina Papatriantafilou

2004-03-25ICDCS’04 Anders Gidenstam2/18

Outline
Background

Time, Clocks and event orderings
Previous Work

Contributions
Non-uniformly mapped vector (NUREV) clocks
How to avoid information loss
R-Others NUREV clock
MinDiff NUREV clock
Experimental results

Conclusions

Future work

2004-03-25ICDCS’04 Anders Gidenstam3/18

Time, Clocks and event
orderings

Distributed system
N processes: P1, P2, ..., PN

• Communicate through messages
• Asynchronous system
• No physical clock

Events: send/receive message or local step
P1
P2

P3

P4

2004-03-25ICDCS’04 Anders Gidenstam4/18

Time, Clocks and event
orderings

We want to order the events of an execution
Why?

• As part of some distributed algorithm
• E.g. Caching of replicated shared objects
• Causally consistent multicast

• For monitoring, debugging etc.

How?
• Use a logical clock algorithm (a.k.a time stamping

system) to assign timestamps to the events
• Timestamps

• Equality and ordering operators: =LC, <LC
• Concurrent if incomparable (unorderable)

2004-03-25ICDCS’04 Anders Gidenstam5/18

Event orderings

Total order
No concurrency
Example: A < C < B < D < E

A B

C D E

Causal order
”happened before” or ”knows about” relation
Example: A || C, B || C, B || D, B || E

2004-03-25ICDCS’04 Anders Gidenstam6/18

1

2

3

4

5

6

Process ID

2
1
2
0

2
0
0
0

<VC

2
1
2
0

3
0
0
0

<VC

Lamport Clocks [Lamport 1978]

Total order (with tie-breaker)
P1

2 3

4

P3

3

Previous Work

P1

2
0
0
0

3
0
0
0

P3
2
1
2
0

0
1
1
0

2
1
3
0

Vector Clocks [Fidge, 1991, Mattern, 1988, Schmuck, 1988]

N clock entries
Causal order

Local update

Local update

1

Receive msg update

Receive msg update

32 <LC 33 <LC

2004-03-25ICDCS’04 Anders Gidenstam7/18

Previous Work

Plausible Clocks [Torres-Rojas and Ahamad, 1999]

Class of logical clocks
• Orders events consistent with causal order, but

may also order concurrent events.

3
1

2
0 <REV

3
0

3
1 <REV

P1

2
0

3
0

P3 3
1

1
1

4
1

Local update

Receive msg update

3
1

3
0 <REV

1

2

3

4

5

Process ID Clock vector

• Includes: Lamport Clock and Vector clock
• R-Entry Vector Clock

• R clock entries
• Clock vector indexed by Process ID mod R

2004-03-25ICDCS’04 Anders Gidenstam8/18

1

2

3

4

5

6

7

Vector clock
Process ID Clock vector

Mapping

Non-uniformly mapped R-entry
vector (NUREV) clocks

A generalization of R-entry vector clocks
1

2

3

4

5

6

7

NUREV clock
Process ID

Mapping

Clock vector

Allows (for example) self tuning and
adaptation of the timestamping system
We have proved that
All NUREV clocks are plausible clocks.

• Regardless of mapping function and how it changes.

Allows a different mapping between
process ID and clock entry in each
timestamp

2004-03-25ICDCS’04 Anders Gidenstam9/18

How to avoid information loss?
Where is ordering information lost?

Inflation of one process key introduces ordering among
concurrent events

Minimize inflation at updates
Choose the mapping so that the
inflation is small.

Bdep-error sequence Bindep-error sequence

Next-Contact
Avoid inflating the keys of processes
you won’t hear from in a long time

2004-03-25ICDCS’04 Anders Gidenstam10/18

R-Others Clock (ROV)

Idea
Preserve recent information
Use exclusive entry for

• own key
• R-2 other processes’ keys

(Last R-2 communication partners)
All other process keys share one entry

1

2

3

4

5

6

7

Process ID

Clock vector

Benefits
Constant-size timestamps
Agrees well with Next-Contact

2004-03-25ICDCS’04 Anders Gidenstam11/18

MinDiff clock

Idea
Minimize the inflation at each clock
update

• Use exclusive entry for own key
• Select a new mapping function on each

receive update
• Map process keys with similar values to

the same entry

Timestamps need to include mapping
• Small for a small number of clock entries

1

2

3

4

5

Clock vector

1

2

3

4

5

Clock vector

1

2

3

4

5

Clock vector
Msg from P1

+

P2’s old clock

P2’s new clock

2004-03-25ICDCS’04 Anders Gidenstam12/18

Experiments

Simulations
Peer-2-Peer systems
Client-Server systems

Performance measure
#ordered concurrent event pairs /
total #concurrent event pairs

2004-03-25ICDCS’04 Anders Gidenstam13/18

Experimental results

Peer-to-peer system 100 processes

2004-03-25ICDCS’04 Anders Gidenstam14/18

Experimental results

Client-server system 1 server 99 clients

2004-03-25ICDCS’04 Anders Gidenstam15/18

MinDiff timestamp sizes

System size
(#processes)

Timestamp size
(byte)

2004-03-25ICDCS’04 Anders Gidenstam16/18

Conclusions
Non-Uniformly Mapped R-Entries
Vector Clocks (NUREV)

A general class of logical clocks
Guaranteed to be plausible
Includes Lamport, Vector and REV clocks

Analysis of when and how NUREV clocks
order concurrent events
New NUREV clock algorithms

MinDiff and R-Others clocks
Improved performance at small timestamp
sizes

2004-03-25ICDCS’04 Anders Gidenstam17/18

Future Work

Apply NUREV clocks in a group
communication / ordered multicast framework

Work in progress
Further investigation of mapping functions

Subsets with constant size representation
Approximations

Bound the size of vector entries

2004-03-25ICDCS’04 Anders Gidenstam18/18

Questions?
Contact Information:

Address:
Anders Gidenstam /
Marina Papatriantafilou
Computing Science
Chalmers University of Technology
SE-412 96 Göteborg, Sweden

Email:
<andersg , ptrianta> @ cs.chalmers.se

Web:
http://www.cs.chalmers.se/~dcs/

