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Synchronization on a shared object

 Lock-free synchronization
 Concurrent operations without enforcing mutual 

exclusion

 Avoids:
• Blocking (or busy waiting), convoy effects, priority 

inversion and risk of deadlock

 Progress Guarantee
• At least one operation always makes progress

P1 P2

P3
P4
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Correctness of a concurrent 

object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1
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 Processes can read/write single 
memory words

 Synchronization primitives

 Built into CPU and memory system

 Atomic read-modify-write (i.e. a 
critical section of one instruction)

 Examples: Compare-and-Swap, 
Load-Linked / Store-Conditional

System Model
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A process’

 Reads/writes may reach memory 
out of order

 Reads of own writes appear in 
program order

 Atomic synchronization 
primitive/instruction

• Single word Compare-and-Swap

• Atomic

• Acts as memory barrier for the process’
own reads and writes

• All own reads/writes before are done before

• All own reads/writes after are done after

The affected cache block is held exclusively

System Model: Memory Consistency
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The Problem

 Concurrent FIFO queue shared data object

 Basic operations: enqueue and dequeue

 Desired Properties

• Linearizable and Lock-free

• Dynamic size (maximum only limited by available 

memory)

• Bounded memory usage (in terms of live contents)

• Fast on real systems
10/06/2011
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Related Work:

Lock-free Multi-P/C Queues
 [Michael & Scott, 1996]

 Linked-list, one element/node

 Global shared head and tail pointers

 [Tsigas & Zhang, 2001]

 Static circular array of elements
• Two different NULL values for distinguishing initially empty from dequeued elements

 Global shared head and tail indices, lazily updated

 [Michael & Scott, 1996] +

Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

 Same as the above + elimination of concurrent pairs of enqueue and 

dequeue when the queue is near empty

 [Hoffman, Shalev & Shavit, 2007] Baskets queue

 Linked-list, one element/node

 Reduces contention between concurrent enqueues after conflict

 Needs stronger memory management than M&S (SLFRC or Beware&Cleanup)
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The Algorithm

 Basic idea:

 Cut and unroll the circular array queue

 Primary synchronization on the elements

• Compare-And-Swap 

(NULL1 -> Value -> NULL2 avoids the ABA problem)

 Head and tail both move to the right

• Need an “infinite” array of elements
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The Algorithm

 Basic idea:

 Creating an “infinite” array of elements.

 Divide into blocks of elements, and link them together

• New empty blocks added as needed

• Emptied blocks are marked deleted and eventually reclaimed

• Block fields: Elements, next, (filled, emptied flags), deleted flag.

 Linked chain of dynamically allocated blocks

• Lock-free memory management needed for safe reclamation!

• Beware&Cleanup [Gidenstam, Papatriantafilou, Sundell & Tsigas, 2009]
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The Algorithm

Thread local storage

 Last used

• Head block/index for Enqueue

• Tail block/index for Dequeue

 Reduces need to read/update global shared 

variables
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The Algorithm

 Enqueue

 Find the right block

(first via TLS, then TLS->next or globalHeadBlock)

 Search the block for the first empty element
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The Algorithm
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 Enqueue

 Find the right block

(first via TLS, then TLS->next or globalHeadBlock)

 Search the block for the first empty element

 Update element with CAS (Also, the linearization point)

*



The Algorithm

 Dequeue

 Find the right block

(first via TLS, then TLS->next or globalTailBlock)

 Search the block for the first valid element
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The Algorithm

 Dequeue

 Find the right block

(first via TLS, then TLS->next or globalTailBlock)

 Search the block for the first valid element

 Remove with CAS, replace with NULL2 (linearization point)
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The Algorithm

 Maintaining the chain of blocks

 Helping scheme when moving between blocks

 Invariants to be maintained

• globalHeadBlock points to

• The newest block or the block before it

• globalTailBlock points to

• The oldest active block (not deleted) or the block before it
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Maintaining the chain of blocks

 Updating globalTailBlock

 Case 1 “Leader”

• Finds the block empty

• If needed help to ensure 

globalTailBlock points to tailBlock (or 

a newer block)
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Maintaining the chain of blocks

 Updating globalTailBlock

 Case 1 “Leader”

• Finds the block empty

• …Helping done…

• Set delete mark
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Maintaining the chain of blocks

 Updating globalTailBlock

 Case 1 “Leader”

• Finds the block empty

• …Helping done…

• Set delete mark

• Update globalTailBlock pointer

• Move own tailBlock pointer
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Maintaining the chain of blocks

 Updating globalTailBlock

 Case 2: “Way out of date”

• tailBlock->next marked 

deleted

• Restart with globalTailBlock

10/06/2011
Anders Gidenstam, University of Borås 23

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

* *



Maintaining the chain of blocks

 Updating globalTailBlock
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Minding the Cache

 Blocks occupy one cache-line

 Cache-lines for enqueue v.s. 

dequeue are disjoint (except 

when near empty)

 Enqueue/dequeue will cause 

coherence traffic for the 

affected block

 Scanning for the head/tail 

involves one cache-line
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Scanning in a weak memory 

model?

 Key observations

 Life cycle for element values (NULL1 -> value -> NULL2)

 Elements are updated with CAS thus requiring 

the old value to be the expected one.

 Scanning only skips values later in the life cycle

• Reading an old value is safe (will try CAS and fail)
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Experimental evaluation

 Micro benchmark 
 Threads execute enqueue and dequeue operations on a 

shared queue
• High contention.

 Test Configurations
1. Random 50% / 50%, initial size 0

2. Random 50% / 50%, initial size 1000

3. 1 Producer / N-1 Consumers

4. N-1 Producers / 1 Consumer

 Measured throughput in items/sec
• #dequeues not returning EMPTY
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Experimental evaluation

 Micro benchmark 
 Algorithms

• [Michael & Scott, 1996]

• [Michael & Scott, 1996] +
Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

• [Hoffman, Shalev & Shavit, 2007]

• [Tsigas & Zhang, 2001]

• The new Cache-Aware Queue [Gidenstam, Sundell & Tsigas, 2010]

 PC Platform
• CPU: Intel Core i7 920 @ 2.67 GHz

• 4 cores with 2 hardware threads each

• RAM: 6 GB DDR3 @ 1333 MHz

• Windows 7 64-bit
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Experimental evaluation (i)
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Experimental evaluation (ii)



10/06/2011
Anders Gidenstam, University of Borås 33

Experimental evaluation (iii)
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Experimental evaluation (iv)



Conclusions

The Cache-Aware Lock-free Queue

 The first lock-free queue algorithm for multiple 

producers/consumers with all of the properties 

below

 Designed to be cache-friendly

 Designed for the weak memory consistency provided by 

contemporary hardware

 Is disjoint-access parallel (except when near empty)

 Use thread-local storage for reduced communication

 Use a linked-list of array blocks for efficient dynamic 

size support
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Thank you for listening!

Questions?


