
Cache-Aware Lock-Free Queues for 

Multiple Producers/Consumers

and

Weak Memory Consistency

Anders Gidenstam

Håkan Sundell

Philippas Tsigas Distributed Computing and Systems group,

Department of Computer Science and Engineering,

Chalmers University of Technology

School of business and informatics

University of Borås



10/06/2011
Anders Gidenstam, University of Borås 2

Outline

 Introduction

 Lock-free synchronization

 The Problem & Related work

 The new lock-free queue algorithm

 Experiments

 Conclusions



10/06/2011
Anders Gidenstam, University of Borås 3

Synchronization on a shared object

 Lock-free synchronization
 Concurrent operations without enforcing mutual 

exclusion

 Avoids:
• Blocking (or busy waiting), convoy effects, priority 

inversion and risk of deadlock

 Progress Guarantee
• At least one operation always makes progress

P1 P2

P3
P4



10/06/2011
Anders Gidenstam, University of Borås 4

Correctness of a concurrent 

object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1



10/06/2011
Anders Gidenstam, University of Borås 5

Correctness of a concurrent 

object 

 Desired semantics of a shared data object

 Linearizability [Herlihy & Wing, 1990]

• For each operation invocation there must be one 

single time instant during its duration where the 

operation appears to take

effect.

• The observed effects

should be consistent

with a sequential

execution of the operations

in that order.

O2

O3

O1

O1 O3 O2



 Processes can read/write single 
memory words

 Synchronization primitives

 Built into CPU and memory system

 Atomic read-modify-write (i.e. a 
critical section of one instruction)

 Examples: Compare-and-Swap, 
Load-Linked / Store-Conditional

System Model

10/06/2011
Anders Gidenstam, University of Borås 6

CPU CPU

Shared Memory



A process’

 Reads/writes may reach memory 
out of order

 Reads of own writes appear in 
program order

 Atomic synchronization 
primitive/instruction

• Single word Compare-and-Swap

• Atomic

• Acts as memory barrier for the process’
own reads and writes

• All own reads/writes before are done before

• All own reads/writes after are done after

The affected cache block is held exclusively

System Model: Memory Consistency

10/06/2011
Anders Gidenstam, University of Borås 7

CPU

core

CPU

core

cache cache

Shared Memory

(or shared cache)

Store 

buffer

Store 

buffer



10/06/2011
Anders Gidenstam, University of Borås 8

Outline

 Introduction

 Lock-free synchronization

 The Problem & Related work

 The new lock-free queue algorithm

 Experiments

 Conclusions



The Problem

 Concurrent FIFO queue shared data object

 Basic operations: enqueue and dequeue

 Desired Properties

• Linearizable and Lock-free

• Dynamic size (maximum only limited by available 

memory)

• Bounded memory usage (in terms of live contents)

• Fast on real systems
10/06/2011

Anders Gidenstam, University of Borås 9

B C EDA

F

G

Tail Head



Related Work:

Lock-free Multi-P/C Queues
 [Michael & Scott, 1996]

 Linked-list, one element/node

 Global shared head and tail pointers

 [Tsigas & Zhang, 2001]

 Static circular array of elements
• Two different NULL values for distinguishing initially empty from dequeued elements

 Global shared head and tail indices, lazily updated

 [Michael & Scott, 1996] +

Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

 Same as the above + elimination of concurrent pairs of enqueue and 

dequeue when the queue is near empty

 [Hoffman, Shalev & Shavit, 2007] Baskets queue

 Linked-list, one element/node

 Reduces contention between concurrent enqueues after conflict

 Needs stronger memory management than M&S (SLFRC or Beware&Cleanup)

10/06/2011
Anders Gidenstam, University of Borås 10

0N-1



10/06/2011
Anders Gidenstam, University of Borås 11

Outline

 Introduction

 Lock-free synchronization

 The Problem & Related work

 The new lock-free queue algorithm

 Experiments

 Conclusions



The Algorithm

 Basic idea:

 Cut and unroll the circular array queue

 Primary synchronization on the elements

• Compare-And-Swap 

(NULL1 -> Value -> NULL2 avoids the ABA problem)

 Head and tail both move to the right

• Need an “infinite” array of elements

10/06/2011
Anders Gidenstam, University of Borås 12

……



The Algorithm

 Basic idea:

 Creating an “infinite” array of elements.

 Divide into blocks of elements, and link them together

• New empty blocks added as needed

• Emptied blocks are marked deleted and eventually reclaimed

• Block fields: Elements, next, (filled, emptied flags), deleted flag.

 Linked chain of dynamically allocated blocks

• Lock-free memory management needed for safe reclamation!

• Beware&Cleanup [Gidenstam, Papatriantafilou, Sundell & Tsigas, 2009]

10/06/2011
Anders Gidenstam, University of Borås 13

globalTailBlock globalHeadBlock

*



The Algorithm

Thread local storage

 Last used

• Head block/index for Enqueue

• Tail block/index for Dequeue

 Reduces need to read/update global shared 

variables
10/06/2011

Anders Gidenstam, University of Borås 14

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

*



The Algorithm

 Enqueue

 Find the right block

(first via TLS, then TLS->next or globalHeadBlock)

 Search the block for the first empty element

10/06/2011
Anders Gidenstam, University of Borås 15

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

scan

*



The Algorithm

10/06/2011
Anders Gidenstam, University of Borås 16

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

Add with CAS

 Enqueue

 Find the right block

(first via TLS, then TLS->next or globalHeadBlock)

 Search the block for the first empty element

 Update element with CAS (Also, the linearization point)

*



The Algorithm

 Dequeue

 Find the right block

(first via TLS, then TLS->next or globalTailBlock)

 Search the block for the first valid element

10/06/2011
Anders Gidenstam, University of Borås 17

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

scan

*



The Algorithm

 Dequeue

 Find the right block

(first via TLS, then TLS->next or globalTailBlock)

 Search the block for the first valid element

 Remove with CAS, replace with NULL2 (linearization point)

10/06/2011
Anders Gidenstam, University of Borås 18

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

*

Remove with CAS



The Algorithm

 Maintaining the chain of blocks

 Helping scheme when moving between blocks

 Invariants to be maintained

• globalHeadBlock points to

• The newest block or the block before it

• globalTailBlock points to

• The oldest active block (not deleted) or the block before it

10/06/2011
Anders Gidenstam, University of Borås 19

globalTailBlock globalHeadBlock

*



Maintaining the chain of blocks

 Updating globalTailBlock

 Case 1 “Leader”

• Finds the block empty

• If needed help to ensure 

globalTailBlock points to tailBlock (or 

a newer block)

10/06/2011
Anders Gidenstam, University of Borås 20

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

*



Maintaining the chain of blocks

 Updating globalTailBlock

 Case 1 “Leader”

• Finds the block empty

• …Helping done…

• Set delete mark

10/06/2011
Anders Gidenstam, University of Borås 21

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

* *



Maintaining the chain of blocks

 Updating globalTailBlock

 Case 1 “Leader”

• Finds the block empty

• …Helping done…

• Set delete mark

• Update globalTailBlock pointer

• Move own tailBlock pointer

10/06/2011
Anders Gidenstam, University of Borås 22

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

* *



Maintaining the chain of blocks

 Updating globalTailBlock

 Case 2: “Way out of date”

• tailBlock->next marked 

deleted

• Restart with globalTailBlock

10/06/2011
Anders Gidenstam, University of Borås 23

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

* *



Maintaining the chain of blocks

 Updating globalTailBlock

 Case 2: “Way out of date”

• tailBlock->next marked 

deleted

• Restart with globalTailBlock

10/06/2011
Anders Gidenstam, University of Borås 24

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

* *



Minding the Cache

 Blocks occupy one cache-line

 Cache-lines for enqueue v.s. 

dequeue are disjoint (except 

when near empty)

 Enqueue/dequeue will cause 

coherence traffic for the 

affected block

 Scanning for the head/tail 

involves one cache-line
10/06/2011

Anders Gidenstam, University of Borås 25

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail



Minding the Cache

 Blocks occupy one cache-line

 Cache-lines for enqueue v.s. 

dequeue are disjoint (except 

when near empty)

 Enqueue/dequeue will cause 

coherence traffic for the 

affected block

 Scanning for the head/tail 

involves one cache-line
10/06/2011

Anders Gidenstam, University of Borås 26

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

Cache-lines



Scanning in a weak memory 

model?

 Key observations

 Life cycle for element values (NULL1 -> value -> NULL2)

 Elements are updated with CAS thus requiring 

the old value to be the expected one.

 Scanning only skips values later in the life cycle

• Reading an old value is safe (will try CAS and fail)

10/06/2011
Anders Gidenstam, University of Borås 27

globalTailBlock globalHeadBlock

Scanning for empty

Scanning for first item to dequeue



10/06/2011
Anders Gidenstam, University of Borås 28

Outline

 Introduction

 Lock-free synchronization

 The Problem & Related work

 The lock-free queue algorithm

 Experiments

 Conclusions



10/06/2011
Anders Gidenstam, University of Borås 29

Experimental evaluation

 Micro benchmark 
 Threads execute enqueue and dequeue operations on a 

shared queue
• High contention.

 Test Configurations
1. Random 50% / 50%, initial size 0

2. Random 50% / 50%, initial size 1000

3. 1 Producer / N-1 Consumers

4. N-1 Producers / 1 Consumer

 Measured throughput in items/sec
• #dequeues not returning EMPTY



10/06/2011
Anders Gidenstam, University of Borås 30

Experimental evaluation

 Micro benchmark 
 Algorithms

• [Michael & Scott, 1996]

• [Michael & Scott, 1996] +
Elimination [Moir, Nussbaum, Shalev & Shavit, 2005]

• [Hoffman, Shalev & Shavit, 2007]

• [Tsigas & Zhang, 2001]

• The new Cache-Aware Queue [Gidenstam, Sundell & Tsigas, 2010]

 PC Platform
• CPU: Intel Core i7 920 @ 2.67 GHz

• 4 cores with 2 hardware threads each

• RAM: 6 GB DDR3 @ 1333 MHz

• Windows 7 64-bit



10/06/2011
Anders Gidenstam, University of Borås 31

Experimental evaluation (i)



10/06/2011
Anders Gidenstam, University of Borås 32

Experimental evaluation (ii)



10/06/2011
Anders Gidenstam, University of Borås 33

Experimental evaluation (iii)



10/06/2011
Anders Gidenstam, University of Borås 34

Experimental evaluation (iv)



Conclusions

The Cache-Aware Lock-free Queue

 The first lock-free queue algorithm for multiple 

producers/consumers with all of the properties 

below

 Designed to be cache-friendly

 Designed for the weak memory consistency provided by 

contemporary hardware

 Is disjoint-access parallel (except when near empty)

 Use thread-local storage for reduced communication

 Use a linked-list of array blocks for efficient dynamic 

size support
10/06/2011

Anders Gidenstam, University of Borås 35



10/06/2011
Anders Gidenstam, University of Borås 36

Thank you for listening!

Questions?


